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Figure 1: Based on sparse images captured from various viewpoints and with different focus distances, apertures, and exposure times (left),
our method generates an HDR 3D Gaussian representation that can be rendered with arbitrary depth of field. Our representation supports
rendering images in a six-dimensional space of camera and lens parameters (right, five dimensions are shown).

Abstract

Radiance field methods represent the state of the art in reconstructing complex scenes from multi-view photos. However, these
reconstructions often suffer from one or both of the following limitations: First, they typically represent scenes in low dynamic
range (LDR), which restricts their use to evenly lit environments and hinders immersive viewing experiences. Secondly, their
reliance on a pinhole camera model, assuming all scene elements are in focus in the input images, presents practical challenges
and complicates refocusing during novel-view synthesis. Addressing these limitations, we present a lightweight method based on
3D Gaussian Splatting that utilizes multi-view LDR images of a scene with varying exposure times, apertures, and focus distances
as input to reconstruct a high-dynamic-range (HDR) radiance field. By incorporating analytical convolutions of Gaussians based
on a thin-lens camera model as well as a tonemapping module, our reconstructions enable the rendering of HDR content with
flexible refocusing capabilities. We demonstrate that our combined treatment of HDR and depth of field facilitates real-time
cinematic rendering, outperforming the state of the art.

CCS Concepts
• Computing methodologies → Computational photography; Image-based rendering;

1. Introduction

Radiance fields [MST∗21] remain the most prevalent representation
for novel-view synthesis applications due to their outstanding ability

to produce high-quality renderings of scenes from multi-view photos.
3D Gaussian representations [KKLD23] have further advanced the
field and now routinely deliver real-time rendering performance.
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Most works in this space are concerned with accurate, all-in-focus
reconstructions of well-lit scenes. However, for radiance fields to
become versatile tools for storytelling and artistic exploration, i.e.,
to become cinematic, they must simultaneously handle high-contrast
illumination and depth of field. To achieve this, we propose a method
for reconstructing high-dynamic-range (HDR) radiance fields with
real-time re-exposure and re-focusing capabilities based on multi-
view low-dynamic-range (LDR) images with varying exposures,
apertures, and focus distances.

Considering the significance of the task, naturally, individual
aspects of our problem setting have already been investigated in
the literature. On the one hand, the limited dynamic range of
typical cameras often leads to overexposed and underexposed re-
gions, causing saturation (clamping to white) and noise, respec-
tively [RHD∗10]. These limitations directly carry over to radiance
fields based on such photos and significantly restrict post-editing
capabilities. Addressing this issue, several works have considered
reconstructing HDR radiance fields from multi-view exposure brack-
ets [HZF∗22, JSYJYBO22, RFS22] or RAW data [MHMB∗22].
On the other hand, defocus blur in input images has been re-
garded as a degradation to overcome for all-in-focus reconstruc-
tion [WLP∗22, MLL∗22, LLSL23, LLS∗24], with synthetic depth
of field as an occasional afterthought. In contrast to all these works,
we embrace both HDR and depth of field as expressive tools and
set out to develop a radiance field reconstruction approach that en-
ables real-time rendering and high-quality post-editing of exposure,
aperture, and focus distance.

The input to our method is a set of LDR images that can be
captured with a consumer-grade camera. Different from typical radi-
ance field reconstruction settings, the input images vary not only in
extrinsic camera parameters, but also in exposure time, aperture size,
and focus distance. This diverse input sample distribution allows
our method to build an all-in-focus HDR 3D Gaussian represen-
tation that is optimized for a subsequent application of lens blur.
Depth of field is modeled as a highly efficient convolution of pro-
jected scene Gaussians with a Gaussian aperture function [KZB03],
based on a thin-lens model. The convolved Gaussians are then raster-
ized and projected to LDR using a dedicated tonemapping module.
Once trained, our model enables novel-view synthesis with arbitrary
combinations of camera and lens parameters, facilitating flexible
post-editing in terms of exposure and depth of field in real time. We
show that our approach can synthesize high-quality and editable
imagery, including appealing bokeh effects that require the joint
treatment of HDR and depth of field. We also demonstrate that our
system is on par with and often outperforms the state of the art in
the individual disciplines of HDR and all-in-focus reconstruction.
This evaluation is based on multiple new datasets we introduce,
including both synthetic and real data, all available on our webpage
https://cinegs.mpi-inf.mpg.de/.

Our contributions can be summarized as follows:

• A unified framework for the reconstruction of HDR radiance
fields with depth of field.

• Powerful post-editing capabilities such as exposure selection and
arbitrary re-focusing in real time.

• State-of-the-art quality in HDR and all-in-focus reconstruction as
well as new challenging benchmark datasets.

2. Related Work

In this section, we discuss previous work on depth-of-field (DoF)
rendering and HDR image reconstruction. We also briefly summa-
rize recent techniques for novel view synthesis, such as Neural
Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS), with
special emphasis on those that support DoF and HDR effects.

2.1. Depth-of-Field Rendering

Depth-of-field (DoF) is the range within a scene where objects ap-
pear in focus, with objects outside this range appearing blurred.
This effect plays an important role in photography and cinematog-
raphy, helping to guide viewer attention and enhance depth percep-
tion [DG04]. Computer graphics has long sought to emulate depth-
of-field effects of real-world camera systems: Cook et al. [CPC84]
employ ray tracing to achieve accurate depth-of-field by casting
rays across the lens. Haeberli et al. [HA90] use the accumulation-
buffer technique, simulating distributed ray tracing by rendering
scenes multiple times from different lens positions and blending
them. Levoy et al. [LH23] apply the same concepts in light field
rendering. However, the quality obtained with these methods is
tied to the number of samples taken, implying a high computa-
tional effort to produce artifact-free images. To trade visual accu-
racy for efficiency, Scofield et al. [Sco92] apply a layered tech-
nique, segmenting scenes into depth-ordered layers for simplified
blurring. This method achieves depth-of-field effects while avoid-
ing blurred edges but struggles with depth-spanning objects. Kri-
vanek et al. [KZB03] propose a surface splatting method suitable
for real-time rendering; occasional artifacts are caused by approxi-
mate surface reconstructions. Potmesil et al. [PC82] utilize forward
mapping to render sprites for depth-of-field effects and blending
pixels as circles in the frame buffer, with a final renormalizing
pass for producing accurate alpha values. This post-processing
method for simulating depth-of-field has influenced many subse-
quent works [WJ22,SZW∗23,PBM∗22,WSP∗23b], which calculate
the circle of confusion (CoC) size based on depth and use spatially
varying convolution to perform weighted averaging.

2.2. High Dynamic Range Image Reconstruction

Typically, we distinguish three major classes of HDR image con-
struction [RHD∗10]: specialized HDR cameras, single-shot methods
that perform dynamic range expansion for an input low dynamic
range (LDR) image, and multi-shot methods that merge differently
exposed LDR images into an HDR output. Specialized HDR cam-
eras have seen limited adoption in practice due to their high costs
and sensor technology limitations [Eil18]. Single-shot (or inverse
tone mapping) methods [BADC17] are an attractive alternative
for handling legacy LDR images. They easily synergize with ma-
chine learning methods [MBRHD18, EKM17, LLC∗20, SRK20]
for denoising underexposed regions and inpainting overexposed de-
tails [EKD∗17, WSP∗23a]. Nevertheless, the fidelity of these meth-
ods falls short of true multi-exposure methods [DM23]. Here, multi-
ple captures are generated at differing exposures. However, merging
those exposures for dynamic scenes or handheld cameras is challeng-
ing due to ghosting and motion blur [SKY∗12, HGP12]. Pioneered
by Kalantari et al. [KR∗17], a further boost of reconstructed HDR
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quality is achieved by learning-based methods. Recent research in
this area focuses on exploring different network architectures, such
as CNNs [KR∗17, YGS∗19, YZL∗20, YZC∗22, XC21] and Trans-
formers [CZZ∗23, LWZL22, TWZ∗23]. Further work explores the
integration of generative adversarial losses [NWL∗21], diffusion
priors [YHS∗23], as well as semi-supervised [YZC∗23, PSA∗21]
and self-supervised methodologies [ZWL∗24].

2.3. Depth-of-Field and High Dynamic Range Radiance Fields

Significant progress has been made in reconstructing radiance fields
from 2D images, with NeRF [MST∗21] and 3D Gaussian Splat-
ting [KKLD23] techniques being particularly noteworthy. Neural
Radiance Fields (NeRF) [MST∗21] use a multi-layer perceptron
(MLP) with positional encoding to map 3D locations and viewing
directions to color and density values. Parameter optimization is
achieved via gradient descent on the photometric error. Subsequent
work on NeRF [HSM∗21, VHM∗22, BMT∗21, BMV∗22, BMV∗23,
MESK22] focused on further improving its quality and initially
slow rendering speed of this implicit representation. In contrast, 3D
Gaussian Splatting (3DGS) [KKLD23] uses explicit 3D Gaussian
primitives as a flexible and expressive scene representation. The
optimization starts from point clouds and optimizes per-Gaussian
properties. While effective, the recency of 3DGS entails minor flaws
in its method. Mip-Splatting [YCH∗24] and multi-scale 3D Gaus-
sian splatting [YLCL24] both address aliasing artifacts present in the
original approach. Mip-Splatting uses 3D size constraints and 2D
Mip filters to enhance image quality for zoomed-in or zoomed-out
views. Multi-scale 3D Gaussian splatting maintains Gaussians at
different scales, using more small Gaussians for high resolution and
larger Gaussians for low resolution.

In most radiance field research, it is assumed that input images
are consistently in focus and well-exposed. While many methods
can tolerate small deviations from those assumptions, few recent
methods more actively model variations in focal length and expo-
sure time. DoF-NeRF [WLP∗22] extends NeRF to handle shallow
depth-of-field inputs and simulate DoF effects through a differen-
tiable circle of confusion representation. Deblur-NeRF [MLL∗22]
improves NeRF by addressing image blurriness from defocus or
motion with a Deformable Sparse Kernel (DSK) module, enabling
sharp 3D reconstructions. DP-NeRF [LLSL23] tackles geometric
and appearance consistency issues in blurred images using physi-
cal priors and adaptive weighting, significantly enhancing 3D re-
construction quality in the presence of motion and defocus blur.
Concurrent work [LLS∗24, DPRBK24] proposes to compensate for
defocus blur in captures with Gaussian splats by inferring alterna-
tive covariances for out-of-focus Gaussians. HDR-NeRF [HZF∗22]
recovers HDR radiance fields from LDR views with different ex-
posures, enabling the generation of novel HDR and LDR views by
modeling the physical imaging process integrated with NeRF. In
freshly appearing concurrent work [CXL∗24], a similar approach
has been proposed for 3DGS that greatly reduces training and in-
ference time. RawNeRF [SGHS98, MHMB∗22] utilizes a modified
NeRF technique that trains directly on linear raw images to preserve
the scene’s full dynamic range, enabling high-quality HDR novel
view synthesis. It should be noted that RawNeRF uses raw format
inputs without defocus blur and requires the multiplane image-based

blurring algorithm [KS07] for refocusing. In contrast, our approach
uses defocused 8-bit LDR inputs, jointly models depth of field and
tone mapping processes, and inherently supports all post-editing
tasks. The methods discussed above can handle simple DoF and
HDR factors independently. However, they cannot account for both
simultaneously; this causes issues in casual captures, e.g., scenes
that contain details in the near foreground and far background, as
well as strong luminance variation between dark shadows and bright
lights.

As shown by TAF [WSP∗23b], a stack of images with different
exposure/aperture/focus can be employed for all-in-focus HDR im-
age reconstruction of particularly demanding scenes for a specific
camera pose. Our goal is to generalize this approach to multiple cam-
era poses within a novel-view synthesis framework based on 3DGS
for efficient rendering. Capturing a complete image stack for each
input camera pose would be impractical; we aim to sample the space
of camera parameter setups between neighboring camera poses so
that, as in traditional NeRF and 3DGS methods, a single image
per pose is effectively captured. This way, we enable high-quality
reconstruction of scenes with high variation of depth and contrast
ranges, and their rendering with arbitrary camera parameters for
any view. Our approach directly benefits from the more realistic
depth-of-field simulations when performed using HDR images as
the input [ZMN∗19].

3. Method

Our approach takes as input a set of LDR multi-view images {Ik}N
k=1

of a scene, captured with randomly selected exposure times t, aper-
ture sizes a, and focus distances d f (Fig. 1, left). Since exposure and
lens settings are typically stored in EXIF headers, we assume this in-
formation is available for each image. Using this input, our method
reconstructs an HDR radiance field that allows for post-editing of
exposure and depth of field.

Our approach is based on the 3D Gaussian Splatting represen-
tation [KKLD23], which we briefly review in Sec. 3.1. The first
step in our pipeline is calibrating the input cameras, detailed in
Sec. 3.2. We then introduce our model, which features an HDR
3D Gaussian scene representation with an integrated defocus blur
simulator (Sec. 3.3). A tonemapping module allows us to train the
representation on LDR input only (Sec. 3.4).

3.1. Background

Radiance fields based on 3D Gaussians [KKLD23] represent a scene
using a Gaussian mixture model. Each primitive has a mean µ ∈R3,
a symmetric covariance matrix Σ ∈ R3×3, an opacity o ∈ R, as
well as a set of spherical harmonics (SH) coefficients encoding
view-dependent RGB color c ∈R3. To render an image using this
representation [ZPVBG01], the primitives are projected to 2D screen
space using a pinhole camera model to obtain a projected mean
µ̂ ∈R2 and projected covariance Σ̂ ∈R2×2. The final pixel color is
obtained using front-to-back compositing:

C(x) = ∑
i∈N(x)

ciαi(x)
i−1

∏
j=1

(
1−α j(x)

)
, (1)
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Figure 2: Our pipeline for rendering HDR radiance fields with controllable depth of field.

where N is the sequence of depth-ordered primitives overlapping
the pixel at location x ∈R2, and

αi(x) = oi · exp
(
−1

2
(x− µ̂i)

T
Σ̂
−1
i (x− µ̂i)

)
(2)

is the opacity of the primitives. Since the rendering function in Eq. 1
is differentiable, the model can be trained from posed input images
via gradient-based optimization.

3.2. Camera Calibration

We require posed input images to build our model. The standard
approach for this is Structure from Motion (SfM) [SF16], which
we run on our input data. Unfortunately, such photometric calibra-
tion leaves the scene’s global scale ambiguous. As various lens
parameters are provided in absolute millimeters, we need to scale
the scene accordingly. To achieve this, we leverage the defocused
images and their respective lens configurations. Specifically, we run
an image blur detector [AGK17] on all input images to obtain per-
pixel sharpness estimates. By thresholding these sharpness maps,
we identify the image space locations of in-focus scene elements.
The known focus distance d f per input image provides ground-truth
depth values for these pixels. Next, we train a vanilla 3D Gaussian
Splatting model on the input images after rescaling pixel intensities
to a common exposure. Using this model, we render a depth map
for each input view. As expected, the renderings from this model
are of low quality given our inputs, but we find the overall scene
configuration precise enough for our calibration. Using the depth
values of the in-focus pixels, we perform a least-squares fit of the
scene scale to match the rendered depth values with the ground
truth.

After calibration, we have the full set of camera and lens parame-
ters per input view at our disposal. Please note that we follow the
methodology established in 3DGS [KKLD23]. The initialization
process differs for synthetic and real datasets: for real scenes, we
use SfM for camera and scale calibration, and initialize the scene
Gaussians using SfM points. For synthetic scenes with predefined
camera parameters, SfM is unnecessary, eliminating scale ambiguity
and calibration. In this case, scene Gaussians are initialized with
random noise (see Sec. 4.1.2).

3.3. HDR Radiance Field with Depth of Field

Here we describe our pipeline, which consists of an HDR 3D Gaus-
sian scene representation, a defocus convolution module, as well as

a tonemapper that projects HDR to LDR content. An overview of
our model is shown in Fig. 2.

Our HDR Gaussians differ from conventional LDR Gaussians
in one crucial property: the per-primitive SH coefficients encoding
view-dependent color c exhibit a significantly larger dynamic range.
We denote this corresponding HDR color as cHDR. Notably, no archi-
tectural changes compared to an LDR representation are necessary
at this stage; the high dynamic range emerges from our carefully
designed pipeline, as detailed in the remainder of this section.

The next stage of our model is concerned with depth of field (DoF)
synthesis, which occurs at the level of 2D Gaussians projected into
screen space. Considering a thin-lens model [PC81], a projected
point with depth d is spread over a disk – typically referred to as the
circle of confusion – with radius

r(d) =

∣∣d −d f
∣∣ · f 2

2 ·a ·d ·
(
d f − f

) , (3)

where f is the focal length, a is the F-number, representing the
aperture size and d f is the focus distance. We seek to enlarge each
projected scene Gaussian to reflect the circle of confusion [KZB03],
where the mean µ determines depth d. We approximate the cir-
cle of confusion using an aperture Gaussian with covariance Σ̂

a =
diag(3r(d),3r(d)) ∈R2×2 to allow for efficient convolutions with
the scene Gaussians. This convolution can be carried out in closed
form [Bro03, CHK∗22], resulting in an update of Eq. 2:

α
DoF
i (x) = oi ·βi · exp

(
−1

2
(x− µ̂i)

T (Σ̂i + Σ̂
a
i )

−1(x− µ̂i)

)
, (4)

with the energy-preserving normalization factor

βi =

√
det(Σ̂i)

det(Σ̂i + Σ̂a
i )
. (5)

Importantly, each projected scene Gaussian is convolved with an
aperture Gaussian reflecting the depth of the scene Gaussian and
the lens configuration, producing spatially-varying defocus blur.
An HDR image with defocus blur can now be rasterized using the
quantities developed above:

CHDR+DoF(x) = ∑
i∈N(x)

cHDR
i α

DoF
i (x)

i−1

∏
j=1

(
1−α

DoF
j (x)

)
. (6)

Naturally, the HDR content rendered in the previous step has
an unbounded range of radiance values. Both training and final
visualization require values in the range [0,1]. Therefore, we project
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HDR values to LDR using the tone mapping function

C̄(x) =
(

min(
t

a2 ·CHDR+DoF(x),1)
)1/γ

, (7)

simulating the per-pixel non-linear response of a real-world cam-
era [AT11]. Here, the final exposure is determined using exposure
time t and aperture size a, before the intensities are clipped to the
target domain. Finally, γ performs a gamma correction from linear
radiance to pixel intensities. We use an explicit tone mapping opera-
tor as it minimizes computational overhead and allows convenient
metadata incorporation.

Eq. 7 produces images that the user can flexibly edit across multi-
ple dimensions: In addition to free viewpoint selection, the user can
adjust the aperture size a, exposure time t, and focus distance d f in
real-time, providing a wide range of artistic control.

3.4. Training

We train our model using the loss function

L= Lrec +λexpLexp +λfocLfoc. (8)

All three terms make use of the photometric consistency measure ∆

that evaluates a sum of ℓ1-distance and DSSIM [WBSS04] metric.
Yet, each term applies ∆ to different versions of the data. The first
term simply measures the consistency between our rendered images
and the input data for all pixels x and training views k:

Lrec = Ex,k
[
∆
(
C̄k(x), Ik(x)

)]
. (9)

To handle the vastly different exposures in our inputs, the second loss
term normalizes the images to a medium exposure by scaling pixel
intensities before computing discrepancies [LLC∗20, WCS∗22]
(Fig. 3, left and center):

Lexp = Ex,k

[
∆

(
C̄k(x)

2 ·Ex
[
C̄k(x)

] , Ik(x)
2 ·Ex [Ik(x)]

)]
. (10)

Finally, due to the prominent occurrence of defocus blur in our
inputs, we found it beneficial to include a loss term that explicitly
addresses sharpness. Specifically, we use an off-the-shelf differen-
tiable image blur detector g [AGK17] that outputs a scalar defocus
map (Fig. 3, right) and compute

Lfoc = Ex,k
[
∆
(
g
(
C̄k(x)

)
,g(Ik(x))

)]
. (11)

We set λexp = 0.25 and λfoc = 1 in all our experiments and train our
models using the Adam [KB15] optimizer with default parameters,
also including all densification strategies from 3DGS [KKLD23].

4. Results and Evaluation

In this section, we demonstrate the effectiveness of our method
through a comprehensive set of experiments. We first describe our
experimental settings in Sec. 4.1, introducing our dataset, which con-
sists of both synthetic and real captured images used for evaluation,
followed by the implementation details used for all results. Then,
in Sec. 4.2, we evaluate separately the capability of our model to
reconstruct all-in-focus and HDR images, comparing our results to
those of specialized state-of-the-art solutions. After this, we present

Underexposed Input Normalized Input Defocus Map

Figure 3: Our training data includes underexposed and overexposed
images (left). Our loss incorporates both the original data (Eq. 9)
and a normalized version of it (Eq. 10). To manage defocus blur, a
third loss component (Eq. 11) incorporates a defocus map.

in Sec. 4.3 results for our complete pipeline, showcasing HDR radi-
ance field reconstructions as well as post-editing applications. Lastly,
in Sec. 4.4 we provide ablation studies of the components of our
approach. Please refer to the supplementary video for additional
results.

4.1. Experimental Settings

4.1.1. Dataset

Our dataset includes four synthetic rendered scenes and four real
captured scenes. The synthetic scenes provide control and ground
truth for evaluation, while the real captured scenes demonstrate the
practical performance of our approach. A sample of all scenes can
be found in the supplementary material.

Synthetic dataset Our synthetic dataset is composed of four diverse
indoor scenes rendered with Cycles (path tracer) in Blender 4.1. The
scenes encompass challenging scenarios with high dynamic range
of illumination (bright light sources and dark regions illuminated
by bounced light) and spacious layouts allowing for multiple focal
planes (examples shown in Figures 5 and 7). All scenes have been
rendered with high number of samples (ranging from 4096 to 16384)
to prevent undesired distortions in the defocused regions caused by
denoising. For each scene we generated 960 HDR images (8 × 8
views sampled at a regular grid wrapped to the sphere surface, 5
uniformly sampled focus distances and 3 different apertures). For
each view we generated all-in-focus ground truth image. This results
in 1024 images per scene. For evaluation purposes we generated
another set of 7 × 7 views located between the training views. All
images are accompanied by a file containing parameters used for ren-
dering (camera transformation matrix, focal length, focus distance,
aperture, etc.). In addition to the HDR content we have modified the
scenes for the AiF reconstruction comparison, producing pleasant
LDR images with reduced dynamic range without clipped regions
(examples shown in Figure 4). The camera locations, apertures, and
focus distances are sampled in a same manner as in the case of the
HDR subset.

Captured dataset Our captured dataset is composed of four real
scenes. Some examples are shown in Figs. 1, 6, and 7. These scenes
were captured using Canon EOS RP and Canon EOS Rebel T6i
cameras, outfitted with RF 85mm F2.0, and EF-S 18-55mm F3.5-
5.6 lenses. Each scene was captured by moving the camera to follow
an approximately 9×9 grid pattern, resulting in 81 images per scene.
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At each camera position in this grid, we varied the exposure time,
aperture, and focus distance to ensure a diverse set of configurations.

4.1.2. Implementation

We use the 3DGS framework [KKLD23] as our baseline, integrat-
ing a thin-lens model and a tone mapping module as described in
Sec. 3.3. The implementation is done in PyTorch and CUDA. All
source code is available on our project webpage.

Additionally, we incorporate some practical design choices to
tackle our task more effectively. Given that our synthetic dataset
starts from random noise without an SfM point cloud initialization,
we employ a coarse-to-fine optimization strategy. During the ini-
tial 7,000 iterations, we exclude tone mapping and depth of field
simulation, training on an exposure-aligned dataset to generate an
initial point cloud. Following this, we refine the optimization using
the coarse result as a starting point. Our first stage training adapts
well to a broad range of dynamic variations. However, due to sparse
viewpoints, we observed instability when the scene’s dynamic range
exceeds 18 stops. The iteration process consists of 40,000 steps,
taking approximately 21 minutes on an RTX A40 GPU, using a
training dataset with a resolution of 1200 × 675.

4.2. Comparisons

In this section we evaluate two important features of our method:
all-in-focus reconstruction and HDR reconstruction. We compare
our method against specialized state-of-the-art approaches designed
to address these specific problems. To facilitate this comparison, we
leverage our synthetic dataset, which provides access to ground truth
images for numerical evaluations. While these specialized methods
excel in their respective domains, it is important to note that they
are limited to solving only one of the problems—those optimized
for all-in-focus reconstruction cannot handle effectively HDR, and
vice versa. Our approach, however, integrates both capabilities and
demonstrates comparable, and in some cases superior performance
to these specialized solutions.

4.2.1. All-in-Focus Reconstruction

For the all-in-focus reconstruction task, we compare our results
against the concurrent work Deblur-Splatting [LLS∗24]. Addition-
ally, we include in the supplementary material comparisons for
Deblur NeRF [MLL∗22], where we observed noticeable deforma-
tions along the boundaries, causing straight lines to appear curved.
We use the four scenes from our synthetic dataset for this evaluation.
In particular, for each of the scenes, we use 64 (8 × 8) viewpoints for
training, each exhibiting varying degrees of defocus blur, and 49 (7
× 7) novel viewpoints not seen during training for the evaluation. Ta-
ble 1 presents the numerical results for PSNR, SSIM [WBSS04], and
LPIPS [ZIE∗18], commonly used for evaluating image quality. Ad-
ditionally, Fig. 4 shows illustrative comparisons to the ground truth.
Although our method is not specifically designed for deblurring, it
achieves results comparable to state-of-the-art method. Regarding
rendering time, both methods are similarly efficient, achieving ap-
proximately 110 frames per second (FPS) on an RTX A40 GPU.
We primarily evaluate the synthetic dataset due to the challenge of
obtaining ground truth for real datasets. To validate our method, we

run Deblur-Splatting on our real dataset using non-reference met-
rics. Since Deblur-Splatting cannot generate HDR, we tone-map our
HDR images and evaluate in the LDR domain using NIQE [MSB12]
and BRISQUE [MMB12]. The results in Table 2 demonstrate our
method’s superior performance.

Table 1: Comparison of all-in-focus reconstruction performance
metrics for our method and Deblur-Splatting using our synthetic
dataset.

Scene Method PSNR ↑ SSIM ↑ LPIPS ↓

Car
Deblur-Splatting 27.23 ± 3.21 0.86 ± 0.07 0.18 ± 0.04
Ours 28.05 ± 0.26 0.89 ± 0.01 0.11 ± 0.01

Attic
Deblur-Splatting 31.86 ± 0.23 0.91 ± 0.01 0.13 ± 0.01
Ours 32.90 ± 0.18 0.93 ± 0.00 0.09 ± 0.00

Café
Deblur-Splatting 30.24 ± 0.42 0.87 ± 0.01 0.12 ± 0.01
Ours 30.50 ± 0.36 0.85 ± 0.01 0.14 ± 0.00

Office
Deblur-Splatting 34.59 ± 0.75 0.95 ± 0.01 0.08 ± 0.01
Ours 31.70 ± 0.80 0.92 ± 0.01 0.05 ± 0.01

4.2.2. HDR Reconstruction

For HDR reconstruction, we compare our results against HDR-
NeRF [HZF∗22] using various metrics specifically targeted towards
evaluating HDR quality, including HDR-VDP-3 [MHH23], PU-
PSNR, and PU-SSIM [MA21], as summarized in Table 3. Visual
comparisons with the ground truth are depicted in Fig. 5. Again, we
use for evaluation the four scenes of our synthetic dataset, with 64
(8 × 8) views for training and 49 (7 × 7) novel ones for testing.
To simulate LDR training views with varying exposures, starting
from the HDR renders from our synthetic dataset, we sample a
single exposure for each view. For this, we first determine the start
and end boundaries that emcompass the entire dynamic range of
the scene [ANSAM21]. Then, we divide this range into eight inter-
vals, within which we sample exposures as described in previous
work [HZF∗22]. Our method consistently outperforms HDR-NeRF
in almost all metrics, demonstrating superior reconstruction capa-
bilities. Notably, we observed that HDR-NeRF tends to overfit to
the LDR images, resulting in lower quality HDR image generation.
Moreover, our approach achieves real-time rendering capabilities,
significantly outperforming HDR-NeRF. We deliver approximately
110 FPS at a resolution of 1200 x 675, in contrast to HDR-NeRF’s
rate of approximately 0.021 FPS for rendering a single image, both
using a GPU RTX A40. We also run HDR-NeRF on our real dataset
using non-reference metrics PU-PIQE [HME∗22] to assess results
from novel views (Table 4). These results highlight that our method
outperforms task-specific approaches.

Table 2: Comparison of all-in-focus reconstruction performance
metrics for our method and Deblur- Splatting using our real dataset.

Method NIQE ↓ BRISQUE ↓

Deblur-Splatting 6.65 ± 1.87 45.77 ± 8.50
Ours 2.66 ± 0.22 32.17 ± 4.75

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Wang et al. / Cinematic Gaussians: Real-Time HDR Radiance Fields with Depth of Field 7 of 13

Input Deblur-Splatting GTOurs

Figure 4: Comparison of all-in-focus reconstruction. Our method provides better or comparable results to Deblur-Splatting method.

Input LDR Images HDR-NeRF GT HDROurs

-3 EV -3 EV -3 EV

Figure 5: Comparison of HDR reconstruction. Left-most column presents input LDR images for a given view. The following columns depict
results acquired by HDR-NeRF, Ground Truth, and results of our method, respectively. Please note, that our method properly reconstructs the
shape of the flame and reproduces successfully high-frequency content, while these details are missing in the results generated by HDR-NeRF.
To depict the accuracy of both methods we provide the HDR-VDP-3 error map in the top right corner of the images. To better show the
differences in the highlights, we render these regions at -3 stops, as shown in the yellow box.

4.3. HDR Radiance Field Reconstruction and Post-Editing

In this section, we showcase the full capabilities of our model,
specifically its ability to reconstruct HDR radiance fields, which
enable the generation of all-in-focus HDR images. Fig. 6 presents
results from various viewpoints, illustrating how our approach ef-
fectively reconstructs detailed scenes with consistent sharpness and
dynamic range from multi-view LDR defocused inputs. Further-
more, we demonstrate the post-editing capabilities enabled by our
method. Our proposed approach reconstructs HDR radiance fields
with real-time re-exposure and re-focusing capabilities. Users have
the flexibility to adjust aperture size, exposure time, and focus dis-
tance in real-time, as demonstrated in Fig. 7.

4.4. Ablation Study

We evaluate the impact of the defocus and exposure loss terms by
conducting ablation studies on both our real and synthetic datasets.
Additionally, we include in the supplementary material an evaluation
of our coarse-to-fine training strategy for the synthetic dataset.

We conduct this evaluation differently for our synthetic and real
datasets. For the synthetic dataset, where ground-truth images are
available, we evaluate our all-in-focus HDR reconstructions against
ground-truth views not included in the training set. Specifically,
we utilize 64 (8 × 8) views for training and 49 (7 × 7) novel
views for testing. This comparison is performed in HDR space,
therefore we use PU-PSNR, PU-SSIM and HDR-VDP-3 as metrics.
We show these results in Table 5. On the other hand, for the captured
dataset, where ground truth is not available, we adopt a different
approach. We use 74 captured views for training and leave out 7
for testing. Then, we synthesize the testing views with our model
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Figure 6: All-in-focus HDR reconstruction. Our method can successfully reconstruct sharp HDR images from defocused images captured with
different exposure times.

Table 3: Comparison of HDR reconstruction performance metrics
for our method and HDR-NeRF using our synthetic dataset.

Scene Method HDR-VDP-3 ↑ PU-PSNR ↑ PU-SSIM ↑

Car
HDR-NeRF 9.70 ± 0.15 29.78 ± 1.72 0.91 ± 0.02
Ours 9.75 ± 0.09 29.67 ± 4.63 0.95 ± 0.01

Attic
HDR-NeRF 9.92 ± 0.03 39.04 ± 0.71 0.96 ± 0.04
Ours 9.98 ± 0.01 38.97 ± 1.01 0.98 ± 0.00

Café
HDR-NeRF 9.16 ± 0.22 26.97 ± 2.56 0.76 ± 0.11
Ours 9.93 ± 0.01 30.02 ± 0.51 0.91 ± 0.00

Office
HDR-NeRF 9.36 ± 0.18 25.13 ± 1.97 0.90 ± 0.01
Ours 9.50 ± 0.09 30.11 ± 0.22 0.71 ± 0.05

Table 4: Comparison of HDR reconstruction performance metric
for our method and HDR-NeRF using our real dataset.

Method PU-PIQE ↓

HDR-NeRF 55.47 ± 2.22
Ours 42.22 ± 1.22

using the original aperture, focus distance, and exposure settings
corresponding to each captured view, and compare these synthesized
views against the actual captures. This comparison is conducted
in LDR space, thus we employ traditional image quality metrics,
in particular, PSNR, SSIM, and LPIPS. Quantitative results are
presented in Table 6, while qualitative results are illustrated in Fig. 8
for the defocus loss term and in Fig. 9 for the exposure loss term.

Table 5: Evaluation of the impact of the defocus and exposure loss
terms in the synthetic dataset.

Method PU-PSNR ↑ PU-SSIM ↑ HDR-VDP ↑

w/o Lexp 33.95 ± 1.59 0.94 ± 0.00 9.80 ± 0.06
w/o Lfoc 33.63 ± 1.54 0.94 ± 0.00 9.78 ± 0.05
Ours 34.04 ± 1.67 0.95 ± 0.00 9.83 ± 0.05

Table 6: Evaluation of the impact of the defocus and exposure loss
terms in the real dataset.

Methods PSNR ↑ SSIM ↑ LPIPS ↓

w/o Lexp 23.95 ± 3.37 0.82 ± 0.10 0.11 ± 0.04
w/o Lfoc 24.35 ± 1.06 0.85 ± 0.06 0.11 ± 0.03
Ours 25.69 ± 2.71 0.86 ± 0.07 0.10 ± 0.02

4.5. Discussion of Depth-of-Field Generation

Our depth-of-field module can achieve real-time performance at
high quality. Alternatives include accumulation buffering [HA90],
which delivers high-quality results but is slow due to the need for
multiple samples. Another method, used in RawNeRF [MHMB∗22],
decomposes the image into multiplane images at different depths
[SGHS98, KS07], applies image space blurring, and then compos-
ites them. While this improves speed, it struggles with large depth
complexity. In contrast, our approach does not have this limitation.

To shed some light on the respective trade-offs, we compare our
method against accumulation buffering for depth of field simula-
tion. Specifically, we replace our DoF module with accumulation
buffering, testing with 20 (ABlow) and 120 samples (ABhigh). Unlike
accumulation buffering, which depends on Monte Carlo sampling,
our method requires only a single rendering. As shown in Table
7, our method delivers depth-of-field quality comparable to accu-
mulation buffering with a high sample count while significantly
improving speed, enabling real-time rendering. Visual comparisons
in Fig. 10 reveal that lower sampling in accumulation buffering
results in noticeable artifacts.

Table 7: Comparisons of our depth-of-field rendering module
against solutions involving an accumulation buffer.

Method PSNR ↑ SSIM ↑ FPS ↑

ABhigh 27.59 ± 3.39 0.94 ± 0.02 1
ABlow 27.29 ± 3.34 0.93 ± 0.02 6
Ours 27.41 ± 3.30 0.94 ± 0.02 90
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Figure 7: Post-editing results. The leftmost column shows the selected input views. The 3 × 3 grid to the right displays novel views, with each
row illustrating the manipulation capabilities of one parameter: focus distance, aperture size, and exposure.
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Input Ours w/o Defocus Loss Ours

Figure 8: The defocus loss provides higher quality reconstruction
for high-frequency patterns.

Ours w/o Exposure Loss
Selected 

Low-Exposure Input Ours

Figure 9: The exposure loss helps to resolve artifacts in the under-
exposed regions, as the one depicted in the green frame.

5. Limitations and Future Work

Our approach does not come without limitations, opening up fruitful
avenues for future work. Our defocus model is a two-fold approxima-
tion of the actual physical processes in a real camera lens. First, we
use a thin-lens model [PC81], which, despite being commonly used,
is a simplified representation of defocus. More sophisticated models
have been developed in the forward-rendering literature [KMH95]
and related work on defocus modeling in the context of reconstruc-
tion from image stacks [WSP∗23b] has shown that advanced effects,
such as lens breathing, can significantly improve accuracy. Second,
we approximate the thin-lens circle of confusion with a Gaussian
function to achieve real-time rendering performance. While this is
a commonly used design decision [Fav10, SZW∗23], it results in a
slight softening of bokeh due to the deviation from a disk kernel.
We believe that moving towards more realistic lens models has the
potential to further increase result quality and cinematic appeal.

OursABhigh ABlow

Figure 10: Depth-of-field rendering comparison. Our real-time
method achieves high-quality results comparable to those using an
accumulation buffer with many samples.

Figure 11: Limitation. All-in-focus HDR reconstruction of a scene
view with extremely high dynamic range, featuring tone-mapped
low (left) and high (right) exposures. In regions with pronounced
darkness and notable noise in the input images, such as the rear
wall of the room, artifacts may arise due to information loss.

In scenes characterized by extremely high dynamic range, where
very dark regions may contain significant noise across most input
images, artifacts may occur in the reconstruction of these dark areas.
These artifacts are pronounced when selecting very high exposures
(Fig. 11). This is expected, since there is insufficient useful infor-
mation, with noise dominating instead in these areas. Nevertheless,
these artifacts are noticeable only under extreme exposure settings in
the reconstruction, while our method remains capable of delivering
pleasing results for the rest of the scene. As discussed above, re-
duced exposure, whether through shorter exposure times or a smaller
aperture, results in increased noise in real camera images. However,
this paper primarily focuses on HDR and depth of field characteris-
tics. Addressing noise in dark regions is identified as a potential area
for future research. Therefore, for our synthetic dataset, we adhere
to the HDR-Nerf [HZF∗22] procedure to render noise-free images.

6. Conclusion

We have presented an approach for reconstructing HDR radiance
fields with depth of field. Unlike previous works that treat only
exposure variations or defocus blur as a degradation to overcome, we
recognize the significance of exposure selection and depth of field
for crafting cinematic imagery. Our pipeline mirrors the physical
processes of a camera, enabling us to train a radiance field model
using LDR images with various exposure and lens configurations.
We found that our method not only allows powerful and appealing
post-editing in real time, but also achieves state-of-the-art quality for
the isolated tasks of HDR and all-in-focus reconstruction. We hope
that our approach moves radiance fields a step closer to becoming
expressive tools for artists and visual media producers.
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